On the Dhar directed-site animals-enumeration problem for the simple cubic lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L919
(http://iopscience.iop.org/0305-4470/22/19/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 12:36

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the Dhar directed-site animals-enumeration problem for the simple cubic lattice

G S Joyce
Wheatstone Physics Laboratory, King's College, Strand, London WC2R 2LS, UK

Received 22 June 1989

Abstract

It is proved that the generating function $\boldsymbol{A}(\boldsymbol{y})$ for the Dhar directed-site animalsenumeration problem on the simple cubic lattice is an algebraic function. This result is used to analyse the detailed critical behaviour of $A(y)$ as $y \rightarrow y_{\mathrm{c}}-$, where $y_{\mathrm{c}}=\frac{1}{22}(-9+5 \sqrt{ } 5)$. Next an asymptotic expansion for the total number A_{n} of directed lattice animals with n sites is derived. Finally, an exact closed-form expression for the generating function $A(y)$ is given.

Dhar (1983) has obtained an exact solution for a directed-site animals-enumeration problem (Stanley et al 1982) on the simple cubic lattice with nearest-neighbour and next-nearest-neighbour connections. In particular, it was shown that the generating function for the problem

$$
\begin{equation*}
A(y)=\sum_{n=1}^{\infty} A_{n} y^{n} \tag{1}
\end{equation*}
$$

where A_{n} is the total number of directed lattice animals with n sites, can be expressed in the form

$$
\begin{equation*}
A(y)=-\rho(z) \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
z=-y /(1+y) \tag{3}
\end{equation*}
$$

where $\rho(z)$ is the mean density function for the hard-hexagon lattice-gas model in the disordered regime (Gaunt and Fisher 1965, Gaunt 1967) and z is the activity parameter for the lattice gas. The application of known exact results for the hard-hexagon model (Baxter 1980, 1981) to the basic relation (2) enabled Dhar to prove that

$$
\begin{equation*}
A_{n} \sim a_{0} \lambda^{n} n^{-5 / 6}\left[1+a_{1} n^{-5 / 6}+\mathrm{O}(1 / n)\right] \tag{4}
\end{equation*}
$$

as $n \rightarrow \infty$, where

$$
\begin{equation*}
\lambda=\frac{1}{2}(9+5 \sqrt{ } 5) \tag{5}
\end{equation*}
$$

and a_{0}, a_{1} are constants.
The main purpose of this letter is to demonstrate that the theory of modular functions (Klein and Fricke 1892, Schoeneberg 1974) can be used to determine the
detailed mathematical properties of the generating function $A(y)$. We begin by considering the following parametric representation for the mean density function in the disordered regime (Baxter 1981):

$$
\begin{align*}
& \rho(x)=-x G(x) H\left(x^{6}\right) /\left(H(x) G\left(x^{6}\right)-x G(x) H\left(x^{6}\right)\right) \tag{6}\\
& z(x)=-x(H(x) / G(x))^{5} \tag{7}
\end{align*}
$$

where

$$
\begin{align*}
& G(x)=\prod_{n=1}^{\infty}\left[\left(1-x^{5 n-4}\right)\left(1-x^{5 n-1}\right)\right]^{-1} \tag{8}\\
& H(x)=\prod_{n=1}^{\infty}\left[\left(1-x^{5 n-3}\right)\left(1-x^{5 n-2}\right)\right]^{-1} \tag{9}
\end{align*}
$$

and x is a non-physical parameter with $-1<x<1$. Next we write equations (6) and (7) in the alternative τ-parametric form

$$
\begin{align*}
& \rho(\tau)=(1-\{\zeta(\tau) / \zeta(6 \tau)\})^{-1} \tag{10}\\
& z(\tau)=-\zeta^{5}(\tau) \tag{11}
\end{align*}
$$

where

$$
\begin{equation*}
\zeta(\tau)=x^{1 / 5}(H(x) / G(x)) \tag{12}
\end{equation*}
$$

is the icosahedral function (Klein and Fricke 1892, p 383),

$$
\begin{equation*}
x=\exp (2 \pi \mathrm{i} \tau) \tag{13}
\end{equation*}
$$

and the parameter τ lies in the upper half of the complex τ-plane with $\operatorname{Re}(\tau)=0$ or $\frac{1}{2}$.
The function $\zeta(\tau)$ is a univalent modular function (or hauptmodul) for the principal congruence subgroup $\Gamma(5)$, and is of particular importance because every modular function associated with $\Gamma(5)$ can be expressed as a rational function of $\zeta(\tau)$. It can also be shown that the two functions $\zeta(\tau)$ and $\zeta(n \tau)$, where $n=2,3,4, \ldots$, must satisfy a polynomial modular equation (see Klein and Fricke 1892, Mordell 1922). For the case $n=6$ this modular equation has the form

$$
\begin{align*}
\zeta_{6}^{11} \zeta_{1}^{11}+\left(\zeta_{6}^{12} \zeta_{1}^{5}\right. & \left.+\zeta_{6}^{5} \zeta_{1}^{12}\right)+6\left(\zeta_{6}^{11} \zeta_{1}^{6}+\zeta_{6}^{6} \zeta_{1}^{11}\right)+9\left(\zeta_{6}^{10} \zeta_{1}^{7}+\zeta_{6}^{7} \zeta_{1}^{19}\right)-5\left(\zeta_{6}^{9} \zeta_{1}^{8}+\zeta_{6}^{8} \zeta_{1}^{9}\right) \\
& -\left(\zeta_{6}^{10} \zeta_{1}^{2}+\zeta_{6}^{2} \zeta_{1}^{10}\right)-5\left(\zeta_{6}^{9} \zeta_{1}^{3}+\zeta_{6}^{3} \zeta_{1}^{9}\right) \\
& +36\left(\zeta_{6}^{7} \zeta_{1}^{5}+\zeta_{6}^{5} \zeta_{1}^{7}\right)+59 \zeta_{6}^{6} \zeta_{1}^{6}-\left(\zeta_{6}^{7}+\zeta_{1}^{7}\right)-6\left(\zeta_{6}^{6} \zeta_{1}+\zeta_{6} \zeta_{1}^{6}\right) \\
& -9\left(\zeta_{6}^{5} \zeta_{1}^{2}+\zeta_{6}^{2} \zeta_{1}^{5}\right)+5\left(\zeta_{6}^{4} \zeta_{1}^{3}+\zeta_{6}^{3} \zeta_{1}^{4}\right)+\zeta_{6} \zeta_{1}=0 \tag{14}
\end{align*}
$$

where $\zeta_{1} \equiv \zeta(\tau)$ and $\zeta_{6} \equiv \zeta(6 \tau)$. We can now use equations (10) and (11) to eliminate ζ_{1} and ζ_{6} from the modular equation (14). This procedure yields the further polynomial equation

$$
\begin{equation*}
\sum_{i=0}^{12} \sum_{j=0}^{4} \rho^{i}(z) b_{i j} z^{j}=0 \tag{15}
\end{equation*}
$$

where the coefficients $b_{i j}$ are integral constants. (The numerical values of the integers $b_{i j}$ are readily obtained from the work of Joyce (1988).) If we apply equations (2) and
(3) to this result we find that the generating function $\boldsymbol{A}(y)$ is an algebraic function which satisfies a polynomial equation of the type

$$
\begin{equation*}
f(A, y) \equiv \sum_{i=0}^{12} \sum_{j=0}^{4} A^{i}(y) c_{i j} y^{j}=0 \tag{16}
\end{equation*}
$$

The numerical values of the coefficients $c_{i j}$ are listed in table 1.
Next we use the Sylvester determinant to eliminate $A(y)$ from the equations $f(A, y)=0$ and $\partial f(A, y) / \partial A=0$, (Goursat 1959, Bliss 1966). This procedure yields the resultant polynomial

$$
\begin{equation*}
\operatorname{Res}(f, \partial f / \partial A ; A) \equiv 2^{8} \times 3^{9} y^{22}(y+1)^{22}\left(11 y^{2}+9 y-1\right)^{24} \tag{17}
\end{equation*}
$$

It follows from the zeros of the resultant (17) that the 12-branched algebraic function $A(y)$ has singular points in the finite y-plane at $y=0,-1, y_{c}$ and $-\left(11 y_{\mathrm{c}}\right)^{-1}$, where

$$
\begin{equation*}
y_{\mathrm{c}}=\frac{1}{22}(-9+5 \sqrt{ } 5) . \tag{18}
\end{equation*}
$$

The physical branch $A(y)$ is clearly analytic at $y=0$ and has a Taylor series representation (1) with a radius of convergence y_{c}. We can determine the Taylor series coefficients A_{n} by using the Newton-Raphson iteration method to obtain a symbolic solution of (16). In table 2 we list the numerical values of A_{n} for $n \leqslant 24$.

The behaviour of the generating function $A(y)$ in the neighbourhood of the branch-point y_{c} can also be found by applying the Newton-Raphson method to (16) provided that suitable local transformations are made to the variables A and y. In this manner we obtain the Puiseux expansion (see Hille 1973):

$$
\begin{equation*}
A(y)=(u \sqrt{ } 5)^{-1}\left(1+\sum_{n=1}^{\infty} d_{n} u^{n}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
& u=\xi^{1 / 6}\left[1-\left(y / y_{c}\right)\right]^{1 / 6} \tag{20}\\
& \xi=\frac{1}{50}(-25+13 \sqrt{ } 5) . \tag{21}
\end{align*}
$$

A list of the non-zero coefficients d_{n} is given in table 3 for $n \leqslant 24$. (It should be noted that the coefficient d_{n} is zero for $n=2,3,4,8,9$ and 14.) We can now estabish the

Table 1. Coefficients $c_{i j}$ in the polynomial equation (16).

i	$j=0$	$j=1$	$j=2$	$j=3$	$j=4$
0	0	1	3	3	1
1	-1	14	48	50	17
2	-11	97	358	381	131
3	-55	415	1590	1715	595
4	-165	1180	4620	5040	1765
5	-330	2321	9207	10130	3574
6	-462	3247	12832	14062	4939
7	-462	3300	12408	13002	4356
8	-330	2475	7920	6930	1815
9	-165	1375	2860	715	-605
10	-55	550	220	-1595	-1210
11	-11	143	-219	-988	-616
12	-1	18	-59	-198	-121

Table 2. Coefficients A_{n} in the series expansion (1)

n	A_{n}
1	1
2	6
3	45
4	365
5	3101
6	27144
7	242636
8	2202873
9	20241055
10	187766940
11	1655409652
12	16517284570
13	156265005369
14	14174126304850
15	135741870538293
16	1303996171096108
17	12561249340326373
18	121298814197201725
19	1173923653088144637
20	11383888351299784090
21	110593459758405535558
22	1076185941425661372698
23	488271889303327382712
24	1048

Table 3. Non-zero coefficients d_{n} in the Puiseux expansion (19).

n	d_{n}
1	$-\frac{1}{2}(1+\sqrt{ } 5)$
5	2
6	$-\frac{1}{66}(123+5 \sqrt{ } 5)$
7	-1
10	3
11	$\frac{2}{33}(81+10 \sqrt{ } 5)$
12	$-\frac{1}{4336}(38861+3075 \sqrt{ } 5)$
13	$-\frac{1}{11}(57+5 \sqrt{ } 5)$
15	4
16	$\frac{3}{22}(149+15 \sqrt{ } 5)$
17	$\frac{2}{1089}(13636+2025 \sqrt{ } 5)$
18	$-\frac{1}{39204}(2445813+289895 \sqrt{ } 5)$
19	$-\frac{6}{121}(764+95 \sqrt{ } 5)$
20	6
21	$\frac{4}{33}(366+35 \sqrt{ } 5)$
22	$\frac{3}{484}(25811+3725 \sqrt{ } 5)$
23	$\frac{16}{167811}(1073331+198290 \sqrt{ } 5)$
24	$-\frac{1}{5174928}(2639186447+409253835 \sqrt{ } 5)$

asymptotic behaviour of the coefficient A_{n} as $n \rightarrow \infty$ by applying the method of Darboux (1878) to the singular part of the expansion (19). The final result is

$$
\begin{equation*}
A_{n} \sim a_{0} \lambda^{n} n^{-5 / 6} \sum_{m=1}^{S}(-1)^{m-1}\left[\Gamma\left(\frac{1}{6}\right) / \Gamma\left(\frac{m}{6}\right)\right](\xi / n)^{\frac{5}{6}(m-1)} S_{m}(n) \tag{22}
\end{equation*}
$$

as $n \rightarrow \infty$, where

$$
\begin{align*}
& a_{0}=\left[\sqrt{ } 5 \Gamma\left(\frac{1}{6}\right) \xi^{1 / 6}\right]^{-1} \tag{23}\\
& \begin{aligned}
& S_{1}(n)= {\left[1+\frac{1}{360}(-275+134 \sqrt{ } 5) n^{-1}-\frac{11}{259200}(168433-75260 \sqrt{ } 5) n^{-2}\right.} \\
& \quad-\frac{187}{1399680000}(1070424025-478699214 \sqrt{ } 5) n^{-3} \\
&\left.\quad+\frac{313973}{2015539200000}(-28868526247+12910400040 \sqrt{ } 5) n^{-4}+\ldots\right] \\
& S_{2}(n)=\frac{4}{3}\left[1+\frac{1}{90}(175-73 \sqrt{ } 5) n^{-1}-\frac{2}{2025}(-25754+11555 \sqrt{ } 5) n^{-2}\right. \\
&\left.\quad-\frac{11}{1366875}(-73873975+33041201 \sqrt{ } 5) n^{-3}+\ldots\right]
\end{aligned} \\
& S_{3}(n)=\frac{9}{4}\left[1+\frac{1}{40}(325-142 \sqrt{ } 5) n^{-1}-\frac{7}{3200}(-99283+44460 \sqrt{ } 5) n^{-2}+\ldots\right] \\
& S_{4}(n)=\frac{112}{27}\left[1+\frac{1}{45}(800-353 \sqrt{ } 5) n^{-1}+\ldots\right] \tag{24}\\
& S_{5}(n)=\frac{1729}{216}[1+\ldots]
\end{align*}
$$

and $\Gamma(x)$ denotes the gamma function. This asymptotic representation gives an accurate approximation for A_{n} when n is small. For example, if the asymptotic value for A_{n} is rounded to the nearest integer one obtains the exact value for A_{n}, provided $n \leqslant 7$! When $n=24$ the representation (22) gives

$$
\begin{equation*}
A_{24} \simeq 1.0488271833 \times 10^{22} \tag{29}
\end{equation*}
$$

which is in excellent agreement with the exact value in table 2.
It can be shown by using the work of Forsyth (1902) that the algebraic generating function $A(y)$ satisfies a homogeneous linear differential equation of 12 th order with polynomial coefficients in y. From this result and the Taylor series (1) it follows that the coefficient A_{n} satisfies a finite linear recurrence relation of the type proposed by Guttmann and Joyce (1972). It is also possible to derive a closed-form expression for $\boldsymbol{A}(y)$ by applying modular function theory to (10). The final result is

$$
\begin{equation*}
[A(y)]^{-1}=y^{1 / 5}(1+y)^{-1 / 5} \Theta-1 \tag{30}
\end{equation*}
$$

where

$$
\begin{align*}
& 4 \zeta_{2}^{3} \Theta=1+[(1\left.\left.-8 \zeta_{2}^{5}\right)-4 \zeta_{2}^{5}\left(\zeta_{2}^{-5}-11-\zeta_{2}^{5}\right)^{1 / 3}\right]^{1 / 2}+\left\{2\left(1-8 \zeta_{2}^{5}\right)+4 \zeta_{2}^{5}\left(\zeta_{2}^{-5}-11-\zeta_{2}^{5}\right)^{1 / 3}\right. \\
&+2\left[\left(1-8 \zeta_{2}^{5}\right)-4 \zeta_{2}^{5}\left(\zeta_{2}^{-5}-11-\zeta_{2}^{5}\right)^{1 / 3}\right]^{1 / 2} \\
&\left.+8 \zeta_{2}^{5}\left[5-2\left(\zeta_{2}^{-5}-11-\zeta_{2}^{5}\right)^{1 / 3}+\left(\zeta_{2}^{-5}-11-\zeta_{2}^{5}\right)^{2 / 3}\right]^{1 / 2}\right\}^{1 / 2} \tag{31}\\
& \zeta_{2}=\frac{1}{3} y^{2 / 5}(1+y)^{-2 / 5}\left[-1+2 y^{-1 / 2}(3+4 y)^{1 / 2} \sin \varphi\right] \tag{32}\\
& \varphi=\frac{1}{3} \sin ^{-1}\left[y^{1 / 2}(18+19 y)(3+4 y)^{-3 / 2}\right] \tag{33}
\end{align*}
$$

and $0<y<y_{\mathrm{c}}$. The transcendental functions in (32) and (33) are associated with the solution of a cubic algebraic equation which has three real roots (the irreducible case).

References

Baxter R J 1980 J. Phys. A: Math. Gen. 13 L61-70

- 1981 J. Stat. Phys. 26 427-52

Bliss G A 1966 Algebraic Functions (New York: Dover)
Darboux M G 1878 J. Math. 4 5-56, 377-416
Dhar D 1983 Phys. Rev. Lett. 51 853-6
Forsyth A R 1902 Theory of Differential Equations vol 4 (Cambridge: Cambridge University Press) p 44
Gaunt D S 1967 J. Chem. Phys. 46 3237-59
Gaunt D S and Fisher M E 1965 J. Chem. Phys. 43 2840-63
Goursat E 1959 Functions of a Complex Variable (A Course in Mathematical Analysis vol 2, part 1) (New York: Dover).
Guttmann A J and Joyce G S 1972 J. Phys. A: Math. Gen. 5 L81-4
Hille E 1973 Analytic Function Theory vol 2 (New York: Chelsea) p 105
Joyce G S 1988 Phil. Trans. R. Soc. A 325 643-702
Klein F and Fricke R 1892 Vorlesungen über die Theorie der elliptischen Modulfunktionen vol 2 (Leipzig: Teubner)
Mordell L J 1922 Proc. Lond. Math. Soc. (2) 20 408-16
Schoeneberg B 1974 Elliptic Modular Functions (Berlin: Springer)
Stanley H E, Redner S and Yang Z-R 1982 J. Phys. A: Math. Gen. 15 L569-73

